Homogenization and low Mach number limit of compressible Navier-Stokes equations in critically perforated domains
dc.contributor.author | Bella, Peter | |
dc.contributor.author | Oschmann, Florian | |
dc.date.accessioned | 2023-08-11T07:02:29Z | |
dc.date.available | 2023-08-11T07:02:29Z | |
dc.date.issued | 2022-07-02 | |
dc.description.abstract | In this note, we consider the homogenization of the compressible Navier-Stokes equations in a periodically perforated domain in R3. Assuming that the particle size scales like ε3, where ε>0 is their mutual distance, and that the Mach number decreases fast enough, we show that in the limit ε→0, the velocity and density converge to a solution of the incompressible Navier-Stokes equations with Brinkman term. We strongly follow the methods of Höfer, Kowalczyk and Schwarzacher [https://doi.org/10.1142/S0218202521500391], where they proved convergence to Darcy’s law for the particle size scaling like εα with α∈(1,3). | en |
dc.identifier.uri | http://hdl.handle.net/2003/42058 | |
dc.identifier.uri | http://dx.doi.org/10.17877/DE290R-23891 | |
dc.language.iso | en | de |
dc.relation.ispartofseries | Journal of mathematical fluid mechanics;24(3) | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | de |
dc.subject.ddc | 510 | |
dc.title | Homogenization and low Mach number limit of compressible Navier-Stokes equations in critically perforated domains | en |
dc.type | Text | de |
dc.type.publicationtype | Article | de |
dcterms.accessRights | open access | |
eldorado.secondarypublication | true | de |
eldorado.secondarypublication.primarycitation | Bella, P., Oschmann, F. Homogenization and Low Mach Number Limit of Compressible Navier-Stokes Equations in Critically Perforated Domains. J. Math. Fluid Mech. 24, 79 (2022). https://doi.org/10.1007/s00021-022-00707-1 | de |
eldorado.secondarypublication.primaryidentifier | https://doi.org/10.1007/s00021-022-00707-1 | de |