Inference on the Lévy measure in case of noisy observations

dc.contributor.authorVetter, Mathias
dc.date.accessioned2013-04-23T13:19:51Z
dc.date.available2013-04-23T13:19:51Z
dc.date.issued2013-04-23
dc.description.abstractIn this paper we are concerned with inference on the Lévy measure of a Lévy process in case of noisy high frequency observations. It is known that standard techniques for denoising, developed for diffusion settings, do not work in this case. For this reason, we provide an extension of the pre-averaging method which allows for a consistent estimation of the Lévy distribution function even under microstructure noise. Interestingly, the asymptotic behaviour of the novel estimator is the same as in the no-noise case. This is in sharp contrast to what is known for diffusions.en
dc.identifier.urihttp://hdl.handle.net/2003/30179
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-10476
dc.language.isoende
dc.relation.ispartofseriesDiscussion Paper / SFB 823;16/2013en
dc.subjectLévy processen
dc.subjectmicrostructure noiseen
dc.subjectnonparametric statisticsen
dc.subjectweak convergenceen
dc.subject.ddc310
dc.subject.ddc330
dc.subject.ddc620
dc.titleInference on the Lévy measure in case of noisy observationsen
dc.typeTextde
dc.type.publicationtypeworkingPaperde
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
DP_1613_SFB823_Vetter.pdf
Size:
305.42 KB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.02 KB
Format:
Item-specific license agreed upon to submission
Description: