Evolutionary Search for Minimal Elements in Partially Ordered Finite Sets

dc.contributor.authorRudoph, Günterde
dc.date.accessioned2004-12-07T08:19:26Z
dc.date.available2004-12-07T08:19:26Z
dc.date.created1998de
dc.date.issued1998-11-08de
dc.description.abstractThe task of finding minimal elements of a partially ordered set is a generalization of the task of finding the global minimum of a real valued function or of finding pareto optimal points of a multicriteria optimization problem. It is shown that evolutionary algorithms are able to converge to the set of minimal elements in finite time with probability one, provided that the search space is finite, the time invariant variation operator is associated with a positive transition probability function and that the selection operator obeys the so called elite preservation strategy.en
dc.format.extent86542 bytes
dc.format.extent88320 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/postscript
dc.identifier.urihttp://hdl.handle.net/2003/5336
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-15256
dc.language.isoende
dc.publisherUniversität Dortmundde
dc.relation.ispartofseriesReihe Computational Intelligence ; 16de
dc.subject.ddc004de
dc.titleEvolutionary Search for Minimal Elements in Partially Ordered Finite Setsen
dc.typeTextde
dc.type.publicationtypereport
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
CI1698_doc.ps
Size:
86.25 KB
Format:
Postscript Files
Loading...
Thumbnail Image
Name:
ci1698_doc.pdf
Size:
84.51 KB
Format:
Adobe Portable Document Format
Description:
DNB