Insurance: an R-Program to Model Insurance Data
dc.contributor.author | Christmann, Andreas | de |
dc.contributor.author | Marin-Galiano, Marcos | de |
dc.date.accessioned | 2004-12-06T18:51:24Z | |
dc.date.available | 2004-12-06T18:51:24Z | |
dc.date.issued | 2004 | de |
dc.description.abstract | Data sets from car insurance companies often have a high-dimensional complex dependency structure. The use of classical statistical methods such as generalized linear models or Tweedie’s compound Poisson model can yield problems in this case. Christmann (2004) proposed a general approach to model the pure premium by exploiting characteristic features of such data sets. In this paper we describe a program to use this approach based on a combination of multinomial logistic regression and epsilon-support vector regression from modern statistical machine learning. | en |
dc.format.extent | 181435 bytes | |
dc.format.mimetype | application/pdf | |
dc.identifier.uri | http://hdl.handle.net/2003/5301 | |
dc.identifier.uri | http://dx.doi.org/10.17877/DE290R-6724 | |
dc.language.iso | en | de |
dc.publisher | Universität Dortmund | de |
dc.subject | claim size | en |
dc.subject | insurance tariff | en |
dc.subject | logistic regression | en |
dc.subject | statistical machine learning | en |
dc.subject | support vector regression | en |
dc.subject.ddc | 310 | de |
dc.title | Insurance: an R-Program to Model Insurance Data | en |
dc.type | Text | de |
dc.type.publicationtype | report | en |
dcterms.accessRights | open access |
Files
Original bundle
1 - 1 of 1