Impact of tungsten incorporation on the tribomechanical behavior of AlCrWxSiN films at room and elevated temperature

Loading...
Thumbnail Image

Date

2021-08-27

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

AlCrWxSiN thin films (0 ≤ x ≤ 17.1 at.%) were synthesized by means of a hybrid magnetron sputtering process, merging direct current (DC) as well as tungsten high power impulse magnetron sputtering (HiPIMS) supplies. The influences of increasing the tungsten contents on the structural as well as the friction and wear behavior at room and high temperatures (500 °C) were elaborated. As a reference, a W61.4N38.6 system served to analyze synergetic effects on the oxidation behavior. Increased tungsten contents in AlCrWxSiN resulted in more distinctive (200)-, (202)-, and (311)- crystal orientations. A W/Cr ratio of ~1 could be correlated with a denser film growth, the highest hardness (24.3 ± 0.7 GPa), and a significantly decreased wear coefficient (<0.3 × 10−5 mm3/Nm). Tribological tests performed at room temperature revealed that the coefficient of friction decreased with higher tungsten contents to µ~0.35. In contrast, at elevated temperatures, the coefficient of friction increased with higher W concentrations due to spotty oxidations in the wear track, which resulted in a locally increased surface roughness. Finally, a phase transformation of the WN film to m-WO3 did not contribute to a friction reduction at 500 °C.

Description

Table of contents

Keywords

Chromium-based nitride, Tungsten nitride, Reactive magnetron sputtering, Hybrid process, High temperature tribology

Citation