Evolutionary algorithms and matroid optimization problems
dc.contributor.author | Reichel, Joachim | de |
dc.contributor.author | Skutella, Martin | de |
dc.date.accessioned | 2009-05-12T16:01:10Z | |
dc.date.available | 2009-05-12T16:01:10Z | |
dc.date.issued | 2007-02 | de |
dc.description.abstract | We analyze teh performance fo evolutionary algorithms on various matroid optimization problems that encompass a vast number of efficiently solvable as well as NP-hard combinatorial optimization problems (including many well-known examples such as minimum spanning tree and maximum bipartite matching). We obtain very promising bounds on the expected running time and quality of the computed solution. Our results establish a better theoretical understanding of why randomized search heuristics yield empirically good results for many real-world problems. | en |
dc.identifier.uri | http://hdl.handle.net/2003/26132 | |
dc.identifier.uri | http://dx.doi.org/10.17877/DE290R-8709 | |
dc.language.iso | en | de |
dc.relation.ispartofseries | Reihe CI; 225-07 | de |
dc.subject | combinatorial algorithms | en |
dc.subject | computations on discrete structures | en |
dc.subject | evolutionary algorithms | en |
dc.subject | matroid intersection | en |
dc.subject | matroids | en |
dc.subject | minimum weight basis | en |
dc.subject | nonnumerical algorithms and problems | en |
dc.subject | randomized search heuristics | en |
dc.subject.ddc | 004 | de |
dc.title | Evolutionary algorithms and matroid optimization problems | en |
dc.type | Text | de |
dc.type.publicationtype | report | de |
dcterms.accessRights | open access |
Files
Original bundle
1 - 1 of 1