Smaller world models for reinforcement learning

dc.contributor.authorRobine, Jan
dc.contributor.authorUelwer, Tobias
dc.contributor.authorHarmeling, Stefan
dc.date.accessioned2025-02-11T08:07:59Z
dc.date.available2025-02-11T08:07:59Z
dc.date.issued2023-08-10
dc.description.abstractModel-based reinforcement learning algorithms try to learn an agent by training a model that simulates the environment. However, the size of such models tends to be quite large which could be a burden as well. In this paper, we address the question, how we could design a model with fewer parameters than previous model-based approaches while achieving the same performance in the 100 K-interactions regime. For this purpose, we create a world model that combines a vector quantized-variational autoencoder to encode observations and a convolutional long short-term memory to model the dynamics. This is connected to a model-free proximal policy optimization agent to train purely on simulated experience from this world model. Detailed experiments on the Atari environments show that it is possible to reach comparable performance to the SimPLe method with a significantly smaller world model. A series of ablation studies justify our design choices and give additional insights.en
dc.identifier.urihttp://hdl.handle.net/2003/43451
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-25282
dc.language.isoen
dc.relation.ispartofseriesNeural processing letters ; 55
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectModel-based reinforcement learningen
dc.subjectWorld modelsen
dc.subjectDiscrete latent spaceen
dc.subjectVQ-VAEen
dc.subjectAtarien
dc.subject.ddc004
dc.subject.rswkBestärkendes Lernen (Künstliche Intelligenz)de
dc.subject.rswkWeltmodellde
dc.subject.rswkDiskretes Systemde
dc.subject.rswkAtaride
dc.titleSmaller world models for reinforcement learningen
dc.typeText
dc.type.publicationtypeArticle
dcterms.accessRightsopen access
eldorado.secondarypublicationtrue
eldorado.secondarypublication.primarycitationRobine, J., Uelwer, T. and Harmeling, S. (2023) ‘Smaller world models for reinforcement learning’, Neural processing letters , (55), pp. 11397–11427. Available at: https://doi.org/10.1007/s11063-023-11381-3en
eldorado.secondarypublication.primaryidentifierhttps://doi.org/10.1007/s11063-023-11381-3

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s11063-023-11381-3.pdf
Size:
1.6 MB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.82 KB
Format:
Item-specific license agreed upon to submission
Description: