Asymptotic normality and confidence intervals for inverse regression models with convolution-type operators

dc.contributor.authorBirke, Melanie
dc.contributor.authorBissantz, Nicolai
dc.date.accessioned2008-11-26T14:51:33Z
dc.date.available2008-11-26T14:51:33Z
dc.date.issued2008-11-26T14:51:33Z
dc.description.abstractWe consider inverse regression models with convolution-type operators which mediate convolution on R^d (d ≥ 1) and prove a pointwise central limit theorem for spectral regularisation estimators which can be applied to construct pointwise confidence regions. Here, we cope with the unknown bias of such estimators by undersmoothing. Moreover, we prove consistency of the residual bootstrap in this setting and demonstrate the feasibility of the bootstrap confidence bands at moderate sample sizes in a simulation study.en
dc.identifier.urihttp://hdl.handle.net/2003/25880
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-14345
dc.language.isoende
dc.subjectBootstrapen
dc.subjectInverse problemen
dc.subjectModel selectionen
dc.subjectTestingen
dc.subject.ddc004
dc.titleAsymptotic normality and confidence intervals for inverse regression models with convolution-type operatorsen
dc.typeTextde
dc.type.publicationtypereporten
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
tr17-08-Bissantz.pdf
Size:
193.95 KB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.92 KB
Format:
Item-specific license agreed upon to submission
Description: