Misspecification testing in a class of conditional distributional models

dc.contributor.authorRothe, Christoph
dc.contributor.authorWied, Dominik
dc.date.accessioned2011-01-18T14:45:49Z
dc.date.available2011-01-18T14:45:49Z
dc.date.issued2011-01-18
dc.description.abstractWe propose a specification test for a wide range of parametric models for conditional distribution function of an outcome variable given a vector of covariates. The test is based on the Cramer-von Mises distance between an unrestricted estimate of the joint distribution function of the data, and an restricted estimate that imposes the structure implied by the model. The procedure is straightforward to implement, is consistent against fixed alternatives, has non-trivial power against local deviations from the null hypothesis of order n^(-1/2), and does not require the choice of smoothing parameters. We also provide an empirical application using data on wages in the US.en
dc.identifier.urihttp://hdl.handle.net/2003/27575
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-4172
dc.language.isoende
dc.relation.ispartofseriesDiscussion Paper / SFB 823 ; 03/2011
dc.relation.isreplacedbyhttp://hdl.handle.net/2003/27595
dc.subjectBootstrapen
dc.subjectCramer-von Mises Distanceen
dc.subjectDistributional Regressionen
dc.subjectQuantile Regressionen
dc.subject.ddc310
dc.subject.ddc330
dc.subject.ddc620
dc.titleMisspecification testing in a class of conditional distributional modelsen
dc.typeTextde
dc.type.publicationtypeworkingPaperde
dcterms.accessRightsrestricted

Files

License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1018 B
Format:
Item-specific license agreed upon to submission
Description: