Properties of Nonlinear Transformations of Fractionally Integrated Processes

dc.contributor.authorDittmann, Ingolfde
dc.contributor.authorGranger, Clive W. J.de
dc.date.accessioned2004-12-06T18:42:28Z
dc.date.available2004-12-06T18:42:28Z
dc.date.issued2000de
dc.description.abstractThis paper shows that the properties of nonlinear transformations of a fractionally integrated process depend strongly on whether the initial series is stationary or not. Transforming a stationary Gaussian I(d) process with d > 0 leads to a long-memory process with the same or a smaller long-memory parameter depending on the Hermite rank of the transformation. Any nonlinear transformation of an antipersistent Gaussian I(d) process is I(0). For non-stationary I(d) processes, every integer power transformation is non-stationary and exhibits a deterministic trend in mean and in variance. In particular, the square of a non-stationary Gaussian I(d) process still has long memory with parameter d, whereas the square of a stationary Gaussian I(d) process shows less dependence than the initial process. Simulation results for other transformations are also discussed.en
dc.format.extent1321038 bytes
dc.format.extent218139 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/postscript
dc.identifier.urihttp://hdl.handle.net/2003/5030
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-5480
dc.language.isoende
dc.publisherUniversitätsbibliothek Dortmundde
dc.subject.ddc310de
dc.titleProperties of Nonlinear Transformations of Fractionally Integrated Processesen
dc.typeTextde
dc.type.publicationtypereporten
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2000_25.pdf
Size:
213.03 KB
Format:
Adobe Portable Document Format
Description:
DNB
No Thumbnail Available
Name:
tr25-00.ps
Size:
1.26 MB
Format:
Postscript Files