The time horizon for stochastic homogenization of the one-dimensional wave equation

Loading...
Thumbnail Image

Date

2023-07

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

The wave equation with stochastic coefficients can be classically homogenized on bounded time intervals; solutions converge in the homogenization limit to solutions of a wave equation with constant coefficients. This is no longer true on large time scales: Even in the periodic case with periodicity ε, classical homogenization fails for times of the order ε−2. We consider the one-dimensional wave equation and are interested in the critical time scale ε−β from where on classical homogenization fails. In the general setting, we derive upper and lower bounds for β in terms of the growth rate of correctors. In the specific setting of i.i.d. coefficients with matched impedance, we show that the critical time scale is ε−1

Description

Table of contents

Keywords

wave

Citation