GRDT: enhancing model based learning for its application in robot navigation

dc.contributor.authorKlingspor, Volkerde
dc.date.accessioned2004-12-06T12:53:31Z
dc.date.available2004-12-06T12:53:31Z
dc.date.created1994de
dc.date.issued1999-10-28de
dc.description.abstractRobotics is one of the most challenging applications for the use of machine learning. Machine learning can offer an increase in flexibility and applicability in many robotic domains. In this paper, we sketch a framework to apply inductive logic programming (ILP) techniques to learning tasks of autonomous mobile robots. We point out differences between three existing algorithms used within this framework and their results. Since all of these algorithms have problems in solving the tasks, we developed GRDT (grammar based rule discovery tool), an algorithm combining their ideas and techniques. The paper is written in English.en
dc.format.extent319756 bytes
dc.format.extent814804 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/postscript
dc.identifier.issn0943-4135de
dc.identifier.urihttp://hdl.handle.net/2003/2580
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-14891
dc.language.isoende
dc.publisherUniversität Dortmundde
dc.relation.ispartofseriesForschungsberichte des Lehrstuhls VIII, Fachbereich Informatik der Universität Dortmund ; 5de
dc.subject.ddc004de
dc.titleGRDT: enhancing model based learning for its application in robot navigationen
dc.typeTextde
dc.type.publicationtypereport
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
V1K5REIT.pdf
Size:
312.26 KB
Format:
Adobe Portable Document Format
Description:
DNB
No Thumbnail Available
Name:
V1K5REIT.ps
Size:
795.71 KB
Format:
Postscript Files