A vision for edge AI

dc.contributor.advisorChen, Jian-Jia
dc.contributor.authorYayla, Mikail
dc.contributor.refereeTeich, Jürgen
dc.date.accepted2024-02-28
dc.date.accessioned2024-04-10T11:03:23Z
dc.date.available2024-04-10T11:03:23Z
dc.date.issued2024
dc.description.abstractEdge Artificial Intelligence is progressively pervading all aspects of our life. However, to perform complex tasks, a massive amount of matrix multiplications needs to be computed. At the same time, the available hardware resources for computation are highly limited. The pressing need for efficiency serves as the motivation for this dissertation. In this dissertation, we propose a vision for highly-resource constrained future intelligent systems that are comprised of robust Binarized Neural Networks operating with approximate memory and approximate computing units, while being able to be trained on the edge.en
dc.identifier.urihttp://hdl.handle.net/2003/42431
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-24267
dc.language.isoende
dc.subjectEmbedded systemen
dc.subjectEdge AIen
dc.subjectMachine learningen
dc.subjectHW/SW codedesignen
dc.subjectNon-volatile memoryen
dc.subjectError toleranceen
dc.subjectEfficient trainingen
dc.subject.ddc004
dc.subject.rswkKünstliche Intelligenzde
dc.subject.rswkEingebettetes Systemde
dc.subject.rswkMaschinelles Lernende
dc.subject.rswkFehlertoleranzde
dc.titleA vision for edge AIen
dc.title.alternativerobust binarized neural networks on emerging resource-constrained hardwareen
dc.typeTextde
dc.type.publicationtypePhDThesisde
dcterms.accessRightsopen access
eldorado.secondarypublicationfalsede

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Dissertation_Yayla.pdf
Size:
2.42 MB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.85 KB
Format:
Item-specific license agreed upon to submission
Description: