Verschlingungsinvarianten und Bandflächen eingebetteter Graphen

dc.contributor.advisorErle, D.de
dc.contributor.authorUhing, Jasonde
dc.contributor.refereeMayer, K. H.de
dc.date.accepted2005
dc.date.accessioned2005-05-12T10:49:48Z
dc.date.available2005-05-12T10:49:48Z
dc.date.created2005-03-10de
dc.date.issued2005-04-25de
dc.description.abstractIn classical knot-theory the linking-number of a link can be calculated from the crossingsof a diagram. This method can be extended to diagrams of spatial graphs. For any abstractgraph this leads to a set of linking-invariants with a structure of a free Z module. It isshown that this module is isomorphic to the linking-module defined by K. Taniyama. Afterthat a basis of the linking-module for the 3-connected simple graphs is constructed. Theelements of that basis are derived from certain subgraphs homeomorphic to K3;3, K5 or disjoint circles . As an application, linking-modules of M¨obius ladders can be calculatedin that way. These elements are used to define unique disk/band surfaces for spatial M¨obiusladders in 3-space with the help of the Gordon-Litherland-form. Up to now constructionsof unique disk/band-surfaces are known only for special classes of planar graphs.en
dc.format.extent3046440 bytes
dc.format.extent16680431 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/postscript
dc.identifier.urihttp://hdl.handle.net/2003/20378
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-3037
dc.language.isodede
dc.publisherUniversität Dortmundde
dc.subjectKnotentheoriede
dc.subjectVerschlingungszahlende
dc.subjectBandflächende
dc.subjectknot-theoryen
dc.subjectlinking-moduleen
dc.subjectdisk/band-surfacesen
dc.subject.ddc510de
dc.titleVerschlingungsinvarianten und Bandflächen eingebetteter Graphende
dc.typeTextde
dc.type.publicationtypedoctoralThesisde
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
uhing.pdf
Size:
2.91 MB
Format:
Adobe Portable Document Format
Description:
DNB
No Thumbnail Available
Name:
uhing.ps
Size:
15.91 MB
Format:
Postscript Files