Lehrstuhl IX: Analysis, Mathematische Physik & Dynamische Systeme

Permanent URI for this collection

Browse

Recent Submissions

Now showing 1 - 14 of 14
  • Item
    Quantitative unique continuation and applications
    (2018) Täufer, Matthias; Veselić, Ivan; Klein, Abel
    This thesis treats quantitative unique continuation principles for functions in spectal subspaces of Schrödinger operators. The first main theorem improves and generalizes several existing results in this field. It treats all finite energy spectral subspaces and Schrödinger operators on bounded as well as on unbounded unbounded domains. The appearing constant is scale-free and uniform over a large class of geometric configuations. Furthermore, the issue of the optimality of its dependece on the energy and on properties of the Schrödinger operators is discussed. The first application are lower bounds on the movement of spectra - in particular of the essential spectrum - of Schröodinger operators under particular non-negative perturbations. For that purpose, abstract results on perturbations of spectra of self-adjoint operators are developed which might be interesting in a broader context. The second application is about random Schrödinger operators. A Wegner estimate, an important step in proving Anderson localization, is established for new classes of such operators. A particular example is the random breather model where the random potential consists of characteristic functions of balls with random radii. Furthermore, Wegner estimates for so-called crooked magnetic alloy-type operators with bounded magnetic potential and for the Landau-breather model are proved. The last application concerns control theory for equations of heat-type with interior control. First, in an abstract framework, null-controllability of some Cauchy problems with explicit estimates on the control cost at all times is proved. The resulting estimate on the control cost is - to our knowledge - the best one with respect to the existing literature. Then, combining this with quantitative unique continuation principles, we obtain explicit estimates on the control cost of heat-type equations on bounded and unbounded domains at all times. This result in this quantitative form is new even for the classic heat equation and enables to study asymptotics of the control cost in the homogenization and the complementary regime.
  • Item
    Magnetische Billards, Finsler-Billards und das Spektrum eines Billards
    (2015-11) Mehanna, Benjamin; Siburg, Karl Friedrich; Schwachhöfer, Lorenz Johannes
    Betrachtet werden zweidimensionale, einfach-zusammenhängende Billards mit glattem Rand, deren zugrunde liegender Fluss einem magnetischen oder Finsler-geodätischen Fluss entspricht. Der magnetische Fluss ist der Euler-Lagrange-Fluss der magnetischen Lagrangefunktion und kann unter Fixierung des Energieniveaus und einer Beschränkung des Vektorpotential auch als Finsler-Fluss aufgefasst werden. Ein magnetisches Billard ist dann als nicht-reversibles Finsler-Billard interpretierbar. Unter geeigneten Voraussetzungen ist die Billardabbildung eines magnetischen Billards eine monotone Twistabbildung mit - je nach vorliegendem Energieniveau - der magnetischen Länge bzw. der magnetischen Energie als Erzeugendenfunktion. Eine analoge Aussage erhält man für reversible Finsler-Billards mit der Finsler-Länge als Erzeugendenfunktion. Daher sind Resultate der Aubry-Mather-Theorie übertragbar, und es lassen sich Existenzaussagen zu periodischen Bahnen, sowie minimalen Bahnen zu beliebigen Rotationszahlen im Twistintervall, ableiten. Für die untersuchten Billards lässt sich dann in Verallgemeinerung zu klassischen Billards das jeweilige Spektrum und markierte Spektrum einführen. Letzteres ist durch die minimale Wirkung beschreibbar, so dass die minimalen Bahnen zentrale Objekte zur Untersuchung des Billards und Formulierung weiterer Aussagen darstellen.
  • Item
    Subnormale Lösungen der vierten Painlevéschen Differentialgleichung
    (2015) Claßen, Christopher; Steinmetz, Norbert; Bergweiler, Walter
    Die Lösungen der vierten Painlevéschen Differentialgleichung 2ww^''=(w^' )^2+3w^4+8zw^3+4(z^2-α) w^2+2β sind entweder rationale Funktionen oder in der komplexen Ebene transzendente meromorphe Funktionen endlicher Ordnung. Betrachtet werden die Lösungen deren Zählfunktion n(r,w)=O(r^2) genügt, die sogenannten subnormalen Lösungen. Mit Hilfe der Hermite-Weber Differentialgleichung w^'= -2±(w^2+2zw-2α) lassen sich unter dem Begriff Hermite-Weber Lösung alle Lösungen zusammenfassen, die sich aus Lösungen der Hermite-Weber Differentialgleiung unter sukzessiver Anwendung von Bäcklundtransformationen ergeben. Es gelingt8 die Zählfunktion signifikant zu reduzieren, so dass man nach endlich vielen Anwendungen geeigneter Bäcklundtransformationen in einer Hermite-Weber Differentialgleichung landet. Da dies für alle subnormalen Lösungen gelingt, folgt als Hauptresultat, dass jede subnormale Lösung der vierten Painlevéschen Differentialgleichung eine Hermite-Weber Lösung ist.
  • Item
    Symbolic dynamics and scattering theory for localized magnetic fields
    (2013-12-20) Schulz, Frank; Siburg, Karl Friedrich; Schwachhöfer, Lorenz Johannes
  • Item
    J-class operators on certain Banach spaces
    (2013-04-22) Nasseri, Amir Bahman; Brück, Rainer; Kaballo, Winfried
  • Item
    Partial quasi-morphisms and symplectic quasi-integrals on cotangent bundles
    (2012-09-28) Monzner, Alexandra; Siburg, Karl Friedrich; Schwachhöfer, Lorenz Johannes
  • Item
    Juliamengen als Sierpińskikurven
    (2009-09-17T08:03:01Z) Bednarek, Ingo; Steinmetz, Norbert; Stiemer, Marcus
  • Item
    Iteration symmetrischer Polynome
    (2008-12-15T09:39:57Z) Hülsmann, Martin; Steinmetz, N.; Brück, R.
  • Item
    Newton's and Halley's methods for real polynomials
    (2007-07-17T12:10:47Z) Elhasadi, Omar Ismael; Steinmetz, Norbert; Brück, Rainer
  • Item
    Geometrie der Juliamenge und präperiodische kritische Punkte
    (2005-07-20T08:41:34Z) Helmich, Jochen; Steinmetz, N.; Brück, R.
    Die Juliamenge einer rationalen Funktion ist definiert als die Menge aller Punkte der Riemannschen Zahlenkugel, in denen die Folge der Iterierten dieser Funktion (im Montelschen Sinne) nicht normal ist. Die Dynamik der Iteriertenfolge sowie die topologischen und geometrischen Eigenschaften der Juliamenge werden entscheidend von kritischen Punkten beeinflusst, in denen definitionsgemäß keine lokale Konformität vorliegt. Topologische Aussagen über Ränder von periodischen Gebieten können je nach Anzahl der durch diese Gebiete gebundenen kritischen Punkte getroffen werden. Je größer die vom Grad der Funktion abhängige endliche Zahl der vorhandenen kritischen Punkte ist, desto schwerer fällt es, allgemeingültige Aussagen über die Juliamenge zu formulieren. In dieser Arbeit werden rationale Funktionen zweiten und vor allen Dingen dritten Grades untersucht, bei denen die Anzahl der für die globale Dynamik entscheidenden kritischen Punkte, das sind gerade die nicht präperiodischen, reduziert ist. Ausgehend von einer notwendigen Bedingung dafür, dass die Juliamenge ein Jordanbogen ist, wird eine Familie gewisser Funktionen konstruiert, bei denen die Hälfte der kritischen Punkte präperiodisch ist. Eine geeignete Teilmenge dieser Familie wird in Äquivalenzklassen eingeteilt, denen vollständige Invarianten zugeordnet werden können. Im durch diese Invarianten definierten Modulraum werden schließlich Bereiche angegeben, deren Parameterwerte auf rationale Funktionen mit bestimmten topologischen und geometrischen Eigenschaften der zugehörigen Juliamengen führen. Das Hauptaugenmerk liegt dabei auf der Zusammenhangseigenschaft und es wird untersucht, unter welchen Bedingungen die Juliamenge zusammenhängend, eine Jordankurve, ein Jordanbogen bzw. total unzusammenhängend ist.
  • Item
    Verschlingungsinvarianten und Bandflächen eingebetteter Graphen
    (Universität Dortmund, 2005-04-25) Uhing, Jason; Erle, D.; Mayer, K. H.
    In classical knot-theory the linking-number of a link can be calculated from the crossingsof a diagram. This method can be extended to diagrams of spatial graphs. For any abstractgraph this leads to a set of linking-invariants with a structure of a free Z module. It isshown that this module is isomorphic to the linking-module defined by K. Taniyama. Afterthat a basis of the linking-module for the 3-connected simple graphs is constructed. Theelements of that basis are derived from certain subgraphs homeomorphic to K3;3, K5 or disjoint circles . As an application, linking-modules of M¨obius ladders can be calculatedin that way. These elements are used to define unique disk/band surfaces for spatial M¨obiusladders in 3-space with the help of the Gordon-Litherland-form. Up to now constructionsof unique disk/band-surfaces are known only for special classes of planar graphs.
  • Item
    Zur Existenz und konformen Invarianz der Robinschen Funktion
    (Universität Dortmund, 2002-01-11) Stiemer, Marcus; Menke, Klaus; Steinmetz, Norbert
    Die Robinsche Funktion eines Gebietes auf der Riemannschen Zahlenkugel, das den Punkt Unendlich enthält, ist die Fundamentallösung einer gemischten potentialtheoretischen Randwertaufgabe mit Singularität in Unendlich. Dabei werden auf einem Teil des Randes Dirichlet- und auf dem verbleibenden Teil Neumann-Bedingungen gefordert. Analog zur logarithmischen Kapazität eines Kompaktums wird die Robinsche Kapazität des Dirichlet-Randes mit Hilfe der Robinschen Funktion erklärt. Wie P. Duren und M. Schiffer nachwiesen, beschreibt die Robinsche Kapazität des Dirichlet-Randes die minimale Verzerrung seiner logarithmischen Kapazität bei Abbildung des gegebenen Gebietes mit geeignet normierten konformen Abbildungen. In der vorliegenden Arbeit wird ein neuer Beweis für die Existenz der Robinschen Funktion unter recht allgemeinen Voraussetzungen erbracht. Die verwendete Beweismethode ist konstruktiv und ermöglicht Darstellung sowie numerische Berechnung der Robinschen Funktion in vielen Fällen. Anschließend wird die Konstruktion der konformen Abbildung eines einfach zusammenhängenden Gebietes, auf dessen Rand eine abgeschlossene Teilmenge ausgezeichnet ist, auf ein gewisses Normalgebiet mit Hilfe der Robinschen Funktion realisiert. Der letzte Teil der Arbeit dient der Untersuchung des Zusammenhanges von Robinscher Kapazität und anderen, bekannten Größen der geometrischen Funktionentheorie, wie z.B. dem harmonischen Maß, der extremalen Distanz und dem konformen Modul. Insbesondere werden in zwei Fällen Formeln angegeben, die die Bestimmung der Robinschen Kapazität aus diesen Größen ermöglichen.
  • Item
    Untere Schranken für die Immersionsdimension homogener Räume
    (Universität Dortmund, 1999-01-19) Walgenbach, Markus
  • Item
    Einbettungen von 4-regulären Graphen in den dreidimensionalen Raum
    (Universität Dortmund, 1998-02-20) Sawollek, Jörg