Optimal designs for the EMAX, log-linear and exponential model

dc.contributor.authorBevanda, Mirjanade
dc.contributor.authorBretz, Frankde
dc.contributor.authorDette, Holgerde
dc.contributor.authorKiss, Christinede
dc.date.accessioned2009-10-29T10:17:31Z
dc.date.available2009-10-29T10:17:31Z
dc.date.issued2009-07-15de
dc.description.abstractIn this paper we derive locally D- and ED_p-optimal designs for the exponential, log-linear and three parameter EMAX-model. We show that for each model the locally D- and ED_p-optimal designs are supported at the same set of points, while the corresponding weights are different. This indicates that for a given model, D-optimal designs are efficient for estimating the smallest dose which achieves 100p% of the maximum effect in the observed dose range. Conversely, ED_p-optimal designs also yield good D-efficiencies. We illustrate the results using several examples and demonstrate that locally D- and ED_p-optimal designs for the EMAX-, log-linear and exponential model are relatively robust with respect to misspecification of the model parameters.en
dc.identifier.urihttp://hdl.handle.net/2003/26489
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-713
dc.language.isoende
dc.relation.ispartofseriesDiscussion Paper / SFB 823; 15/2009de
dc.subjectChebyshev systemen
dc.subjectD-optimalityen
dc.subjectdose findingen
dc.subjectdose responseen
dc.subjectED_p-optimalityen
dc.subjectElfving's Theoremen
dc.subjectoptimal designen
dc.subject.ddc310de
dc.subject.ddc330de
dc.subject.ddc620de
dc.titleOptimal designs for the EMAX, log-linear and exponential modelen
dc.typeTextde
dc.type.publicationtypereportde
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
015.pdf
Size:
372.96 KB
Format:
Adobe Portable Document Format
Description:
DNB