Optimal designs for the EMAX, log-linear and exponential model
dc.contributor.author | Bevanda, Mirjana | de |
dc.contributor.author | Bretz, Frank | de |
dc.contributor.author | Dette, Holger | de |
dc.contributor.author | Kiss, Christine | de |
dc.date.accessioned | 2009-10-29T10:17:31Z | |
dc.date.available | 2009-10-29T10:17:31Z | |
dc.date.issued | 2009-07-15 | de |
dc.description.abstract | In this paper we derive locally D- and ED_p-optimal designs for the exponential, log-linear and three parameter EMAX-model. We show that for each model the locally D- and ED_p-optimal designs are supported at the same set of points, while the corresponding weights are different. This indicates that for a given model, D-optimal designs are efficient for estimating the smallest dose which achieves 100p% of the maximum effect in the observed dose range. Conversely, ED_p-optimal designs also yield good D-efficiencies. We illustrate the results using several examples and demonstrate that locally D- and ED_p-optimal designs for the EMAX-, log-linear and exponential model are relatively robust with respect to misspecification of the model parameters. | en |
dc.identifier.uri | http://hdl.handle.net/2003/26489 | |
dc.identifier.uri | http://dx.doi.org/10.17877/DE290R-713 | |
dc.language.iso | en | de |
dc.relation.ispartofseries | Discussion Paper / SFB 823; 15/2009 | de |
dc.subject | Chebyshev system | en |
dc.subject | D-optimality | en |
dc.subject | dose finding | en |
dc.subject | dose response | en |
dc.subject | ED_p-optimality | en |
dc.subject | Elfving's Theorem | en |
dc.subject | optimal design | en |
dc.subject.ddc | 310 | de |
dc.subject.ddc | 330 | de |
dc.subject.ddc | 620 | de |
dc.title | Optimal designs for the EMAX, log-linear and exponential model | en |
dc.type | Text | de |
dc.type.publicationtype | report | de |
dcterms.accessRights | open access |
Files
Original bundle
1 - 1 of 1