Representation of solutions to wave equations with profile functions

dc.contributor.authorLamacz, Agnes
dc.contributor.authorSchweizer, Ben
dc.date.accessioned2019-08-05T12:53:43Z
dc.date.available2019-08-05T12:53:43Z
dc.date.issued2019-05-17
dc.description.abstractSolutions to the wave equation with constant coefficients in $\mathbb{R}^d$ ca be represented explicitly in Fourier space. We investigate a reconstruction formula, which provides an approximation of solutions $u(., t)$ to initial data $u_0(.)$ for large times. The reconstruction consists of three steps: 1) Given $u_0$, initial data for a profile equation are extracted. 2) A profile evolution equation determines the shape of the profile at time $\tau = \varepsilon^2 t$. 3) A shell reconstruction operator transforms the profile to a function on $\mathbb{R}^d$. The sketched construction simplifies the wave equation, since only a one-dimensional problem in an $O(1)$ time span has to be solved. We prove that the construction provides a good approximation to the wave evolution operator for times $t$ of order $\varepsilon^{-2}$.en
dc.identifier.urihttp://hdl.handle.net/2003/38166
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-20145
dc.language.isoen
dc.relation.ispartofseriesPreprint;2019-04en
dc.subjectlarge time asymptoticsen
dc.subjectwave equationen
dc.subjecteffective equationen
dc.subjectdispersionen
dc.subject.ddc610
dc.titleRepresentation of solutions to wave equations with profile functionsen
dc.typeTextde
dc.type.publicationtypepreprinten
dcterms.accessRightsopen access
eldorado.secondarypublicationfalse

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Preprint 2019-04.pdf
Size:
502.45 KB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.85 KB
Format:
Item-specific license agreed upon to submission
Description: