Effective Maxwell’s equations in general periodic microstructures

dc.contributor.authorSchweizer, Ben
dc.contributor.authorUrban, Maik
dc.date.accessioned2017-03-28T09:15:49Z
dc.date.available2017-03-28T09:15:49Z
dc.date.issued2017-03-15
dc.description.abstractWe study the time harmonic Maxwell equations in a meta-material consisting of perfect conductors and void space. The meta-material is assumed to be periodic with period η > 0; we study the behaviour of solutions ( E^η ,H^η ) in the limit η → 0 and derive an effective system. In geometries with a non-trivial topology, the limit system implies that certain components of the effective fields vanish. We identify the corresponding effective system and can predict, from topological properties of the meta-material, whether or not it permits the propagation of waves.en
dc.identifier.urihttp://hdl.handle.net/2003/35904
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-17928
dc.language.isoen
dc.subjectMaxwell’s equationsen
dc.subjecthomogenizationen
dc.subjectdiffractionen
dc.subjectperiodic structureen
dc.subjectmeta-materialen
dc.subject.ddc610
dc.subject.rswkMaxwellsche Gleichungende
dc.subject.rswkHomogenisierungsmethodede
dc.subject.rswkBeugungde
dc.subject.rswkMikrostrukturde
dc.titleEffective Maxwell’s equations in general periodic microstructuresen
dc.typeTextde
dc.type.publicationtypepreprinten
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Preprint 2017-01.pdf
Size:
591.03 KB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.85 KB
Format:
Item-specific license agreed upon to submission
Description: