Julia sets, Jordan curves and quasi-circles

dc.contributor.authorSteinmetz, Norbert
dc.date.accessioned2025-02-20T07:49:08Z
dc.date.available2025-02-20T07:49:08Z
dc.date.issued2023-11-30
dc.description.abstractIn this paper, the classification of rational functions whose Julia sets are Jordan arcs or curves, which started in (Carleson and Gamelin in Complex dynamics, Springer, Berlin, 1993; Steinmetz in Math Ann 307:531–541, 1997), will be completed. The method of proof is based on two quasi-conformal surgery procedures, which enables shifting the critical points in simply connected (super-)attracting and parabolic basins into a single critical point of highest possible multiplicity.en
dc.identifier.urihttp://hdl.handle.net/2003/43480
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-25313
dc.language.isoen
dc.relation.ispartofseriesComputational methods and function theory; 24(3)
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectJulia seten
dc.subjectJordan curveen
dc.subjectParabolic fixed pointen
dc.subjectQuasi-conformal surgeryen
dc.subject.ddc510
dc.subject.rswkJulia-Mengede
dc.subject.rswkJordanscher Kurvensatzde
dc.subject.rswkQuasikonforme Abbildungde
dc.subject.rswkParabolische Differentialgleichungde
dc.subject.rswkFixpunkttheoriede
dc.titleJulia sets, Jordan curves and quasi-circlesen
dc.typeText
dc.type.publicationtypeArticle
dcterms.accessRightsopen access
eldorado.secondarypublicationtrue
eldorado.secondarypublication.primarycitationSteinmetz, N. (2024) ‘Julia sets, Jordan curves and quasi-circles’, Computational methods and function theory, 24(3), pp. 539–545. Available at: https://doi.org/10.1007/s40315-023-00512-5
eldorado.secondarypublication.primaryidentifierhttps://doi.org/10.1007/s40315-023-00512-5

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s40315-023-00512-5.pdf
Size:
207.73 KB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.82 KB
Format:
Item-specific license agreed upon to submission
Description: