Julia sets, Jordan curves and quasi-circles
dc.contributor.author | Steinmetz, Norbert | |
dc.date.accessioned | 2025-02-20T07:49:08Z | |
dc.date.available | 2025-02-20T07:49:08Z | |
dc.date.issued | 2023-11-30 | |
dc.description.abstract | In this paper, the classification of rational functions whose Julia sets are Jordan arcs or curves, which started in (Carleson and Gamelin in Complex dynamics, Springer, Berlin, 1993; Steinmetz in Math Ann 307:531–541, 1997), will be completed. The method of proof is based on two quasi-conformal surgery procedures, which enables shifting the critical points in simply connected (super-)attracting and parabolic basins into a single critical point of highest possible multiplicity. | en |
dc.identifier.uri | http://hdl.handle.net/2003/43480 | |
dc.identifier.uri | http://dx.doi.org/10.17877/DE290R-25313 | |
dc.language.iso | en | |
dc.relation.ispartofseries | Computational methods and function theory; 24(3) | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.subject | Julia set | en |
dc.subject | Jordan curve | en |
dc.subject | Parabolic fixed point | en |
dc.subject | Quasi-conformal surgery | en |
dc.subject.ddc | 510 | |
dc.subject.rswk | Julia-Menge | de |
dc.subject.rswk | Jordanscher Kurvensatz | de |
dc.subject.rswk | Quasikonforme Abbildung | de |
dc.subject.rswk | Parabolische Differentialgleichung | de |
dc.subject.rswk | Fixpunkttheorie | de |
dc.title | Julia sets, Jordan curves and quasi-circles | en |
dc.type | Text | |
dc.type.publicationtype | Article | |
dcterms.accessRights | open access | |
eldorado.secondarypublication | true | |
eldorado.secondarypublication.primarycitation | Steinmetz, N. (2024) ‘Julia sets, Jordan curves and quasi-circles’, Computational methods and function theory, 24(3), pp. 539–545. Available at: https://doi.org/10.1007/s40315-023-00512-5 | |
eldorado.secondarypublication.primaryidentifier | https://doi.org/10.1007/s40315-023-00512-5 |