The rank of sparse random matrices

Abstract

We determine the asymptotic normalized rank of a random matrix A over an arbitrary field with prescribed numbers of nonzero entries in each row and column. As an application we obtain a formula for the rate of low-density parity check codes. This formula vindicates a conjecture of Lelarge (2013). The proofs are based on coupling arguments and a novel random perturbation, applicable to any matrix, that diminishes the number of short linear relations.

Description

Table of contents

Keywords

Finite field, Random constraint satisfaction, Random matrices, Rank, Sparse matrices

Citation