Optimal designs for estimating pairs of coefficients in Fourier regression models

dc.contributor.authorDette, Holger
dc.contributor.authorMelas, Viatcheslav B.
dc.contributor.authorShpilev, Petr
dc.date.accessioned2008-11-26T14:13:13Z
dc.date.available2008-11-26T14:13:13Z
dc.date.issued2008-11-26T14:13:13Z
dc.description.abstractIn the common Fourier regression model we investigate the optimal design problem for estimating pairs of the coefficients, where the explanatory variable varies in the interval [¡¼; ¼]. L-optimal designs are considered and for many important cases L- optimal designs can be found explicitly, where the complexity of the solution depends on the degree of the trigonometric regression model and the order of the terms for which the pair of the coefficients has to be estimated.en
dc.identifier.urihttp://hdl.handle.net/2003/25860
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-14447
dc.language.isoende
dc.subjectEquivalence theoremen
dc.subjectFourier regression modelen
dc.subjectL-optimal designen
dc.subjectParameter subseten
dc.subject.ddc004
dc.titleOptimal designs for estimating pairs of coefficients in Fourier regression modelsen
dc.typeTextde
dc.type.publicationtypereporten
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
tr02-08-Dette.pdf
Size:
241.6 KB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.92 KB
Format:
Item-specific license agreed upon to submission
Description: