Lattice dynamics on large time scales and dispersive effective equations

dc.contributor.authorSchweizer, Ben
dc.contributor.authorTheil, Florian
dc.date.accessioned2018-02-06T16:49:45Z
dc.date.available2018-02-06T16:49:45Z
dc.date.issued2017-12-19
dc.description.abstractWe investigate the long time behavior of waves in crystals. Starting from a linear wave equation on a discrete lattice with periodicity ε > 0, we derive the continuum limit equation for time scales of order ε^(-2). The effective equation is a weakly dispersive wave equation of fourth order. Initial values with bounded support result in ring-like solutions and we characterize the dispersive long-time behavior of the radial profiles with a linearized KdV equation of third order.en
dc.identifier.urihttp://hdl.handle.net/2003/36361
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-18362
dc.language.isoen
dc.subjectlattice dynamicsen
dc.subjectcontinuum limiten
dc.subjectdispersive effective equationen
dc.subject.ddc610
dc.subject.rswkGitterdynamikde
dc.subject.rswkKorteweg-de-Vries-Gleichungde
dc.titleLattice dynamics on large time scales and dispersive effective equationsen
dc.typeTextde
dc.type.publicationtypepreprinten
dcterms.accessRightsopen access
eldorado.secondarypublicationfalse

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Preprint 2017-05.pdf
Size:
794.71 KB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.85 KB
Format:
Item-specific license agreed upon to submission
Description: