Random walks with drift, a sequential approach

dc.contributor.authorSteland, Ansgarde
dc.date.accessioned2004-12-06T18:51:25Z
dc.date.available2004-12-06T18:51:25Z
dc.date.issued2004de
dc.description.abstractIn this paper sequential monitoring schemes to detect nonparametric drifts are studied for the random walk case. The procedure is based on a kernel smoother. As a by-product we obtain the asymptotics of the Nadaraya-Watson estimator and its associated sequential partial sum process under non-standard sampling. The asymptotic behavior differs substantially from the stationary situation, if there is a unit root (random walk component). To obtain meaningful asymptotic results we consider local nonparametric alternatives for the drift component. It turns out that the rate of convergence at which the drift vanishes determines whether the asymptotic properties of the monitoring procedure are determined by a deterministic or random function. Further, we provide a theoretical result about the optimal kernel for a given alternative.en
dc.format.extent371400 bytes
dc.format.extent862839 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/postscript
dc.identifier.urihttp://hdl.handle.net/2003/5302
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-6664
dc.language.isoende
dc.publisherUniversität Dortmundde
dc.subjectcontrol charten
dc.subjectnonparametric smoothingen
dc.subjectsequential analysisen
dc.subjectunit rootsen
dc.subjectweighted partial sum processen
dc.subject.ddc310de
dc.titleRandom walks with drift, a sequential approachen
dc.typeTextde
dc.type.publicationtypereporten
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
50_04.pdf
Size:
362.7 KB
Format:
Adobe Portable Document Format
Description:
DNB
No Thumbnail Available
Name:
50_04.ps
Size:
842.62 KB
Format:
Postscript Files