Some Robust Design Strategies for Percentile Estimation in Binary Response Models

dc.contributor.authorBiedermann, Stefaniede
dc.contributor.authorDette, Holgerde
dc.contributor.authorPepelyshev, Andreyde
dc.date.accessioned2004-12-06T18:39:07Z
dc.date.available2004-12-06T18:39:07Z
dc.date.issued2004de
dc.format.extent191298 bytes
dc.format.extent353076 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/postscript
dc.identifier.urihttp://hdl.handle.net/2003/4890
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-16156
dc.language.isoende
dc.publisherUniversitätsbibliothek Dortmundde
dc.subjectFor the problem of percentile estimation of a quantal response curve, we determine multi-objective designs which are robust with respect to misspecifications of the model assumptions. We propose a maximin approach based on efficiencies and provide designs that are simultaneously efficient with respect to the particular choice of various parameter regions and link functions. Furthermore, we deal with the problems of designing model and percentile robust experiments and give various examples of such designs, which are calculated numerically.en
dc.subjectbinary response modelen
dc.subjectrobust optimal designen
dc.subjectc-efficiencyen
dc.subjectpercentile estimationen
dc.subjectmulti-objective designsen
dc.subject.ddc310de
dc.titleSome Robust Design Strategies for Percentile Estimation in Binary Response Modelsen
dc.typeTextde
dc.type.publicationtypereporten
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
19_04.pdf
Size:
186.81 KB
Format:
Adobe Portable Document Format
Description:
DNB
No Thumbnail Available
Name:
tr19-04.ps
Size:
344.8 KB
Format:
Postscript Files