MOD_p-tests, Almost Independence and Small Probability Spaces

dc.contributor.authorBertram-Kretzberg, Claudiade
dc.contributor.authorLefmann, Hannode
dc.date.accessioned2004-12-07T08:19:03Z
dc.date.available2004-12-07T08:19:03Z
dc.date.created1997de
dc.date.issued1998-11-06de
dc.description.abstractIn this paper, we consider approximations of probability distributions over ZZ n p . We present an approach to estimate the quality of approximations of probability distributions towards the construction of small probability spaces. These are used to derandomize algorithms. In contrast to results by Even, Goldreich, Luby, Nisan and Velickovich [EGLNV], our methods are simple, and for reasonably small p, we get smaller sample spaces. Our considerations are motivated by a problem which was mentioned in recent work of Azar, Motwani and Naor [AMN], namely, how to construct in time polynomial in n a good approximation to the joint probability distribution of the random variables X1;X2; : : :;Xn where each Xi has values in f0; 1g and satises Xi = 0 with probability q and Xi = 1 with probability 1en
dc.format.extent236098 bytes
dc.format.extent261074 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/postscript
dc.identifier.urihttp://hdl.handle.net/2003/5312
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-5635
dc.language.isoende
dc.publisherUniversität Dortmundde
dc.relation.ispartofseriesReihe Computational Intelligence ; 3de
dc.subject.ddc004de
dc.titleMOD_p-tests, Almost Independence and Small Probability Spacesen
dc.typeTextde
dc.type.publicationtypereport
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
lefmann.pdf
Size:
230.56 KB
Format:
Adobe Portable Document Format
Description:
DNB
No Thumbnail Available
Name:
lefmann.ps
Size:
254.96 KB
Format:
Postscript Files