On MSE-optimal crossover designs

dc.contributor.authorNeumann, Christoph
dc.contributor.authorKunert, Joachim
dc.date.accessioned2017-01-06T12:30:55Z
dc.date.available2017-01-06T12:30:55Z
dc.date.issued2017
dc.description.abstractIn crossover designs, each subject receives a series of treatments one after the other. Most papers on optimal crossover designs consider an estimate which is corrected for carryover effects. We look at the estimate for direct effects of treatment, which is not corrected for carryover effects. If there are carryover effects, this estimate will be biased. We try to find a design that minimizes the mean square error, that is the sum of the squared bias and the variance. It turns out that the designs which are optimal for the corrected estimate are highly efficient for the uncorrected estimate.en
dc.identifier.urihttp://hdl.handle.net/2003/35743
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-17771
dc.language.isoende
dc.relation.ispartofseriesDiscussion Paper / SFB823;1, 2017en
dc.subjectoptimal designen
dc.subjectMSE-optimalityen
dc.subjectcrossover designen
dc.subject.ddc310
dc.subject.ddc330
dc.subject.ddc620
dc.subject.rswkOptimale Versuchsplanungde
dc.subject.rswkMittlerer quadratischer Fehlerde
dc.titleOn MSE-optimal crossover designsen
dc.typeTextde
dc.type.publicationtypeworkingPaperde
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
DP_0117_SFB823_Neumann_Kunert.pdf
Size:
388.37 KB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.12 KB
Format:
Item-specific license agreed upon to submission
Description: