New model-based bioequivalence statistical approaches for pharmacokinetic studies with sparse sampling

dc.contributor.authorLoingeville, Florence
dc.contributor.authorBertrand, Julie
dc.contributor.authorNguyen, Thu Thuy
dc.contributor.authorSharan, Satish
dc.contributor.authorFeng, Kairui
dc.contributor.authorSun, Wanjie
dc.contributor.authorHan, Jing
dc.contributor.authorGrosser, Stella
dc.contributor.authorZhao, Liang
dc.contributor.authorFang, Lanyan
dc.contributor.authorMöllenhoff, Kathrin
dc.contributor.authorDette, Holger
dc.contributor.authorMentré, France
dc.date.accessioned2020-07-17T14:37:37Z
dc.date.available2020-07-17T14:37:37Z
dc.date.issued2020
dc.description.abstractIn traditional pharmacokinetic (PK) bioequivalence analysis, two one-sided tests (TOST) are conducted on the area under the concentration-time curve and the maximal concentration derived using a non-compartmental approach. When rich sampling is unfeasible, a model-based (MB) approach, using nonlinear mixed effect models (NLMEM) is possible. However, MB-TOST using asymptotic standard errors (SE) presents increased type I error when asymptotic conditions do not hold. Methods : In this work, we propose three alternative calculations of the SE based on i) an adaptation to NLMEM of the correction proposed by Gallant, ii) the a posteriori distribution of the treatment coefficient using the Hamiltonian Monte Carlo algorithm, and iii) parametric random effects and residual errors bootstrap. We evaluate these approaches by simulations, for two-arms parallel and two-periods two-sequences cross-over design with rich (n=10) and sparse (n=3) sampling under the null and the alternative hypotheses, with MB-TOST. Results: All new approaches correct for the in ation of MB-TOST type I error in PK studies with sparse designs. The approach based on the a posteriori distribution appears to be the best compromise between controlled type I errors and computing times. Conclusion: MB-TOST using non-asymptotic SE controls type I error rate better than when using asymptotic SE estimates for bioequivalence on PK studies with sparse sampling.en
dc.identifier.urihttp://hdl.handle.net/2003/39208
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-21125
dc.language.isoende
dc.relation.ispartofseriesDiscussion Paper / SFB823;19/2020en
dc.subjectpharmacokineticsen
dc.subjectnon-asymptotic standard erroren
dc.subjecttwo 21 one-sided testsen
dc.subjectnonlinear mixed effects modelen
dc.subjectbioequivalenceen
dc.subject.ddc310
dc.subject.ddc330
dc.subject.ddc620
dc.titleNew model-based bioequivalence statistical approaches for pharmacokinetic studies with sparse samplingen
dc.typeTextde
dc.type.publicationtypeworkingPaperde
dcterms.accessRightsopen access
eldorado.secondarypublicationfalsede

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
DP_1920_SFB823_Loingeville_Bertrand_Nguyen_Sharan_Feng_Dette_etal..pdf
Size:
481.36 KB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.85 KB
Format:
Item-specific license agreed upon to submission
Description: