Robust Estimators are Hard to Compute

dc.contributor.authorBernholt, Thorsten
dc.date.accessioned2006-01-25T12:51:23Z
dc.date.available2006-01-25T12:51:23Z
dc.date.issued2006-01-25T12:51:23Z
dc.description.abstractIn modern statistics, the robust estimation of parameters of a re- gression hyperplane is a central problem. Robustness means that the estimation is not or only slightly a®ected by outliers in the data. In this paper, it is shown that the following robust estimators are hard to compute: LMS, LQS, LTS, LTA, MCD, MVE, Constrained M es- timator, Projection Depth (PD) and Stahel-Donoho. In addition, a data set is presented such that the ltsReg-procedure of R has proba- bility less than 0.0001 of ¯nding a correct answer. Furthermore, it is described, how to design new robust estimators.en
dc.format.extent308185 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/2003/22138
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-14253
dc.language.isoen
dc.relation.ispartofseriesSonderforschungsbereich 475;52/05
dc.subjectalgorithmsen
dc.subjectcomplexity theoryen
dc.subjectcomputational statisticsen
dc.subjectrobust statisticsen
dc.subjectsearch heuristicsen
dc.subject.ddc004
dc.titleRobust Estimators are Hard to Computeen
dc.typeTextde
dc.type.publicationtypereporten
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
tr52-05.pdf
Size:
300.96 KB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.92 KB
Format:
Item-specific license agreed upon to submission
Description: