Weak convergence of the empirical truncated distribution function of the Lévy measure of an Itos semimartingale

dc.contributor.authorHoffmann, Michael
dc.contributor.authorVetter, Mathias
dc.date.accessioned2015-06-29T12:35:08Z
dc.date.available2015-06-29T12:35:08Z
dc.date.issued2015
dc.description.abstractGiven an Ito semimartingale with a time-homogeneous jump part observed at high frequency, we prove weak convergence of a normalized truncated empirical distribution function of the Levy measure to a Gaussian process. In contrast to competing procedures, our estimator works for processes with a non-vanishing diffusion component and under simple assumptions on the jump process.en
dc.identifier.urihttp://hdl.handle.net/2003/34129
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-7604
dc.language.isoende
dc.relation.ispartofseriesDiscussion Paper / SFB 823;18/2015en
dc.subjectempirical distribution functionen
dc.subjectweak convergenceen
dc.subjectLévy measureen
dc.subjectIto semimartingaleen
dc.subjecthigh-frequency statisticsen
dc.subject.ddc310
dc.subject.ddc330
dc.subject.ddc620
dc.titleWeak convergence of the empirical truncated distribution function of the Lévy measure of an Itos semimartingaleen
dc.typeTextde
dc.type.publicationtypeworkingPaperde
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
DP_1815_SFB823_Hoffmann_Vetter.pdf
Size:
398.46 KB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.12 KB
Format:
Item-specific license agreed upon to submission
Description: