Weak convergence of the empirical truncated distribution function of the Lévy measure of an Itos semimartingale

dc.contributor.authorHoffmann, Michael
dc.contributor.authorVetter, Mathias
dc.date.accessioned2015-06-29T12:35:08Z
dc.date.available2015-06-29T12:35:08Z
dc.date.issued2015
dc.description.abstractGiven an Ito semimartingale with a time-homogeneous jump part observed at high frequency, we prove weak convergence of a normalized truncated empirical distribution function of the Levy measure to a Gaussian process. In contrast to competing procedures, our estimator works for processes with a non-vanishing diffusion component and under simple assumptions on the jump process.en
dc.identifier.urihttp://hdl.handle.net/2003/34129
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-7604
dc.language.isoende
dc.relation.ispartofseriesDiscussion Paper / SFB 823;18/2015en
dc.subjectempirical distribution functionen
dc.subjectweak convergenceen
dc.subjectLévy measureen
dc.subjectIto semimartingaleen
dc.subjecthigh-frequency statisticsen
dc.subject.ddc310
dc.subject.ddc330
dc.subject.ddc620
dc.titleWeak convergence of the empirical truncated distribution function of the Lévy measure of an Itos semimartingaleen
dc.typeTextde
dc.type.publicationtypeworkingPaperde
dcterms.accessRightsopen access
eldorado.dnb.deposittruede

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
DP_1815_SFB823_Hoffmann_Vetter.pdf
Size:
398.46 KB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.12 KB
Format:
Item-specific license agreed upon to submission
Description: