Threshold Selection, Hypothesis Tests, and DOE Methods

dc.contributor.authorBeielstein, Thomasde
dc.contributor.authorMarkon, Sandorde
dc.date.accessioned2004-12-07T08:21:00Z
dc.date.available2004-12-07T08:21:00Z
dc.date.created2001de
dc.date.issued2002-04-08de
dc.description.abstractThreshold selection - a selection mechanism for noisy evolutionary algorithms - is put into the broader context of hypothesis testing. Theoretical results are presented and applied to a simple model of stochastic search and to a simplified elevator simulator. Design of experiments methods are used to validate the significance of the results.en
dc.format.extent303878 bytes
dc.format.extent331954 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/postscript
dc.identifier.urihttp://hdl.handle.net/2003/5417
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-15303
dc.language.isoende
dc.publisherUniversität Dortmundde
dc.relation.ispartofseriesReihe Computational Intelligence ; 121de
dc.subject.ddc004de
dc.titleThreshold Selection, Hypothesis Tests, and DOE Methodsen
dc.typeTextde
dc.type.publicationtypereport
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
121.pdf
Size:
324.17 KB
Format:
Adobe Portable Document Format
Description:
DNB
No Thumbnail Available
Name:
121.ps
Size:
296.76 KB
Format:
Postscript Files