On robust Gaussian Graphical Modelling

dc.contributor.authorFried, Roland
dc.contributor.authorVogel, Daniel
dc.date.accessioned2009-12-16T09:51:55Z
dc.date.available2009-12-16T09:51:55Z
dc.date.issued2009-12-16T09:51:55Z
dc.description.abstractThe objective of this exposition is to give an overview of the existing approaches to robust Gaussian graphical modelling. We start by thoroughly introducing Gaussian graphical models (also known as covariance selection models or concentration graph models) and then review the established, likelihood-based statistical theory (estimation, testing and model selection). Afterwards we describe robust methods and compare them to the classical approaches.en
dc.identifier.urihttp://hdl.handle.net/2003/26554
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-15989
dc.language.isoende
dc.relation.ispartofseriesDiscussion Paper / SFB 823;36/2009
dc.subjectCovariance selection modelen
dc.subjectGaussian graphical modelen
dc.subjectRobust methoden
dc.subject.ddc310
dc.subject.ddc330
dc.subject.ddc620
dc.titleOn robust Gaussian Graphical Modellingen
dc.typeTextde
dc.type.publicationtypereportde
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
DP_3609_SFB823_Fried_Vogel.pdf
Size:
274.63 KB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.12 KB
Format:
Item-specific license agreed upon to submission
Description: