Design and tuning of an evolutionary multiobjective optimisation algorithm

dc.contributor.advisorRudolph, Günter
dc.contributor.authorNaujoks, Boris
dc.contributor.refereeJin, Yaochu
dc.date.accepted2011-03-29
dc.date.accessioned2011-04-06T13:58:22Z
dc.date.available2011-04-06T13:58:22Z
dc.date.issued2011-04-06
dc.description.abstractIn this cumulative thesis an approach to multiobjective evolutionary optimisation using the hypervolume or the S-metric, respectively for selection is presented. This algorithm is tested and compared to standard techniques on two-, three and more dimensional objective spaces. To decide upon the right time when to stop a stochastic optimisation run, the method called online convergence detection is developed. This as well as the framework of sequential parameter optimisation for evolutionary multiobjective optimisation algo- rithms are general frameworks for different kinds of optimisation approaches. Both are successfully coupled with the presented algorithm on different test cases, even industrial ones from aerodynamics. A chapter on diversity in decision and objective space completes this thesis, which ends with an outlook on interesting research directions for the future.en
dc.identifier.urihttp://hdl.handle.net/2003/27678
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-13412
dc.language.isoende
dc.subjectEvolutionary multiobjective optimisationen
dc.subjectHypervolumeen
dc.subjectStopping criteriaen
dc.subjectSequential parameter optimisationen
dc.subject.ddc004
dc.titleDesign and tuning of an evolutionary multiobjective optimisation algorithmen
dc.typeTextde
dc.type.publicationtypedoctoralThesisde
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
dissertation.pdf
Size:
5.33 MB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.85 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections