Robust Filtering of Time Series with Trends

dc.contributor.authorFried, Rolandde
dc.date.accessioned2004-12-06T18:41:22Z
dc.date.available2004-12-06T18:41:22Z
dc.date.issued2003de
dc.description.abstractWe develop and test a robust procedure for extracting an underlying signal in form of a time-varying trend from very noisy time series. The application we have in mind is online monitoring data measured in intensive care, where we find periods of relative constancy, slow monotonic trends, level shifts and many measurement artifacts. A procedure is needed which allows a fast and reliable denoising of the data and which distinguishes artifacts from clinically relevant changes in the patient’s condition. We use robust regression functionals for local approximation of the trend in a moving time window. For further improving the robustness of the procedure we investigate online outlier replacement by e.g. trimming or winsorization based on robust scale estimators. The performance of several versions of the procedure is compared in important data situations and applications to real and simulated data are given.en
dc.format.extent1259664 bytes
dc.format.extent456829 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/postscript
dc.identifier.urihttp://hdl.handle.net/2003/4992
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-4300
dc.language.isoende
dc.publisherUniversitätsbibliothek Dortmundde
dc.subjectonline monitoringen
dc.subjectsignal extractionen
dc.subjectlevel shiften
dc.subjecttrenden
dc.subjectoutlieren
dc.subjectbias curveen
dc.subject.ddc310de
dc.titleRobust Filtering of Time Series with Trendsen
dc.typeTextde
dc.type.publicationtypereporten
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
30_03.pdf
Size:
446.12 KB
Format:
Adobe Portable Document Format
Description:
DNB
No Thumbnail Available
Name:
tr30-03.ps
Size:
1.2 MB
Format:
Postscript Files