The empirical process of residuals from an inverse regression

dc.contributor.authorKutta, Tim
dc.contributor.authorBissantz, Nicolai
dc.contributor.authorChown, Justin
dc.contributor.authorDette, Holger
dc.date.accessioned2019-02-06T12:57:27Z
dc.date.available2019-02-06T12:57:27Z
dc.date.issued2019
dc.description.abstractIn this paper we investigate an indirect regression model characterized by the Radon transformation. This model is useful for recovery of medical images obtained by computed tomography scans. The indirect regression function is estimated using a series estimator motivated by a spectral cut-off technique. Further, we investigate the empirical process of residuals from this regression, and show that it satsifies a functional central limit theorem.en
dc.identifier.urihttp://hdl.handle.net/2003/37904
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-19891
dc.language.isoende
dc.relation.ispartofseriesDiscussion Paper / SFB823;02/2019en
dc.subjectindirect regression modelen
dc.subjectempirical processen
dc.subjectRadon transformen
dc.subjectinverse problemsen
dc.subject.ddc310
dc.subject.ddc330
dc.subject.ddc620
dc.subject.rswkRegressionsanalysede
dc.subject.rswkApproximative Inverseen
dc.subject.rswkRadon-Transformationde
dc.titleThe empirical process of residuals from an inverse regressionen
dc.typeTextde
dc.type.publicationtypeworkingPaperde
dcterms.accessRightsopen access
eldorado.secondarypublicationfalsede

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
DP_0219_SFB823_Kutta_Bissantz_ Chown_Dette.pdf
Size:
427.12 KB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.85 KB
Format:
Item-specific license agreed upon to submission
Description: