Effective Linear Genetic Programming

dc.contributor.authorBanzhaf, Wolfgangde
dc.contributor.authorBrameier, Markusde
dc.date.accessioned2004-12-07T08:20:47Z
dc.date.available2004-12-07T08:20:47Z
dc.date.created2001de
dc.date.issued2001-10-29de
dc.description.abstractDifferent variants of genetic operators are introduced and compared for linear genetic programming including program induction without crossover. Variation strength of crossover and mutations is controlled based on the genetic code. Effectivity of genetic operations improves on code level and on fitness level. Thereby algorithms for creating code efficient solutions are presented.de
dc.format.extent363958 bytes
dc.format.extent399412 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/postscript
dc.identifier.urihttp://hdl.handle.net/2003/5407
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-15250
dc.language.isoende
dc.publisherUniversität Dortmundde
dc.relation.ispartofseriesReihe Computational Intelligence ; 108de
dc.subject.ddc004de
dc.titleEffective Linear Genetic Programmingen
dc.typeTextde
dc.type.publicationtypereport
dcterms.accessRightsopen access
eldorado.dnb.deposittrue

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
ci108.pdf
Size:
390.05 KB
Format:
Adobe Portable Document Format
Description:
DNB
No Thumbnail Available
Name:
ci108.ps
Size:
355.43 KB
Format:
Postscript Files