Manifold Identification in Dual Averaging Methods for Regularized Stochastic Online Learning

Loading...
Thumbnail Image

Date

2012-03-07

Journal Title

Journal ISSN

Volume Title

Publisher

Alternative Title(s)

Abstract

Iterative methods that calculate their steps from approximate subgradient directions have proved to be useful for stochastic learning problems over large and streaming data sets. When the objective consists of a loss function plus a nonsmooth regularization term whose purpose is to induce structure in the solution, the solution often lies on a low-dimensional manifold of parameter space along which the regularizer is smooth. (When an l1 regularizer is used to induce sparsity in the solution, for example, this manifold is defined by the set of nonzero components of the parameter vector.) This paper shows that a regularized dual averaging algorithm can identify this manifold, with high probability, before reaching the solution. This observation motivates an algorithmic strategy in which, once an iterate is suspected of lying on an optimal or near-optimal manifold, we switch to an “local phase” algorithm that searches in this manifold, thus converging rapidly to a near-optimal point. Computational results are presented to verify the identification property and to illustrate the effectiveness of this approach.

Description

Table of contents

Keywords

dual averaging, manifold identification, partly smooth manifold, regularization

Subjects based on RSWK

Citation