Achieving intelligence in mobility

dc.contributor.authorKaiser, Michaelde
dc.date.accessioned2004-12-06T12:53:43Z
dc.date.available2004-12-06T12:53:43Z
dc.date.created1994de
dc.date.issued1999-11-09de
dc.description.abstractThis paper presents an integrated approach to the application of machine learning tasks that can be observed throughout a number of typical applications of mobile robots and puts those tasks into persepective with respect to both existing and newly developed learning techniques. The actual realization of the approach has been carried out on the two mobile robots PRIAMOS and TESEO, which are both operating in a real office environment. In this context, several experimental results are presented. This paper appeared in: IEEE-Expert: Special Track on Intelligent Robotic Systems, Vol. 10, No. 2, April 1995.en
dc.format.extent444945 bytes
dc.format.extent629959 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/postscript
dc.identifier.issn0943-4135de
dc.identifier.urihttp://hdl.handle.net/2003/2597
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-5099
dc.language.isoende
dc.publisherUniversität Dortmundde
dc.relation.ispartofseriesForschungsberichte des Lehrstuhls VIII, Fachbereich Informatik der Universität Dortmund ; 13de
dc.subject.ddc004de
dc.titleAchieving intelligence in mobilityen
dc.typeTextde
dc.type.publicationtypereport
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
I.ps
Size:
615.19 KB
Format:
Postscript Files
Loading...
Thumbnail Image
Name:
Report13.pdf
Size:
434.52 KB
Format:
Adobe Portable Document Format
Description:
DNB