Dynamic mean-field theory for dense spin systems at infinite temperature
dc.contributor.author | Gräßer, Timo | |
dc.contributor.author | Bleicker, Philip | |
dc.contributor.author | Hering, Dag-Björn | |
dc.contributor.author | Yarmohammadi, Mohsen | |
dc.contributor.author | Uhrig, Götz S. | |
dc.date.accessioned | 2021-12-14T08:05:15Z | |
dc.date.available | 2021-12-14T08:05:15Z | |
dc.date.issued | 2021-12-10 | |
dc.description.abstract | A dynamic mean-field theory for spin ensembles (spinDMFT) at infinite temperatures on arbitrary lattices is established. The approach is introduced for an isotropic Heisenberg model with S=12 and external field. For large coordination numbers, it is shown that the effect of the environment of each spin is captured by a classical time-dependent random mean field which is normally distributed. Expectation values are calculated by averaging over these mean fields, i.e., by a path integral over the normal distributions. A self-consistency condition is derived by linking the moments defining the normal distributions to spin autocorrelations. In this framework, we explicitly show how the rotating-wave approximation becomes a valid description for increasing magnetic field. We also demonstrate that the approach can easily be extended. Exemplarily, we employ it to reach a quantitative understanding of a dense ensemble of spins with dipolar interaction which are distributed randomly on a plane including static Gaussian noise as well. | en |
dc.identifier.uri | http://hdl.handle.net/2003/40603 | |
dc.identifier.uri | http://dx.doi.org/10.17877/DE290R-22473 | |
dc.language.iso | en | de |
dc.relation.ispartofseries | Phys. Rev. Research;3 | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.subject | Dipolar interaction | en |
dc.subject | Nitrogen vacancy centers in diamond | en |
dc.subject | Dynamical mean field theory | en |
dc.subject | Heisenberg model | en |
dc.subject | Atomic, molecular & optical | en |
dc.subject | Statistical physics | en |
dc.subject | Condensed matter & materials physics | en |
dc.subject | Quantum information | en |
dc.subject.ddc | 530 | |
dc.subject.rswk | Dipol-Dipol-Wechselwirkung | de |
dc.subject.rswk | Gitterbaufehler | de |
dc.subject.rswk | Stickstoff | de |
dc.subject.rswk | Diamantstruktur | de |
dc.subject.rswk | Heisenberg-Modell | de |
dc.subject.rswk | Statistische Physik | de |
dc.subject.rswk | Monte-Carlo-Simulation | de |
dc.subject.rswk | Spin | de |
dc.subject.rswk | Dynamische Molekularfeldtheorie | de |
dc.subject.rswk | Kondensierte Materie | de |
dc.subject.rswk | Festkörperphysik | de |
dc.title | Dynamic mean-field theory for dense spin systems at infinite temperature | en |
dc.type | Text | de |
dc.type.publicationtype | article | de |
dcterms.accessRights | open access | |
eldorado.secondarypublication | true | de |
eldorado.secondarypublication.primarycitation | Gräßer, T.; Bleicker, P.; Hering, D.-B.; Yarmohammadi, M.; Uhrig, G. S. (2021) Dynamic mean-field theory for dense spin systems at infinite temperature. Phys. Rev. Research 3(4), 043168. | de |
eldorado.secondarypublication.primaryidentifier | https://doi.org/10.1103/PhysRevResearch.3.043168 | de |