Tightness for a stochastic Allen-Cahn equation
dc.contributor.author | Röger, Matthias | |
dc.contributor.author | Weber, Hendrik | |
dc.date.accessioned | 2010-10-08T11:33:25Z | |
dc.date.available | 2010-10-08T11:33:25Z | |
dc.date.issued | 2010-10-08 | |
dc.description.abstract | We study an Allen-Cahn equation perturbed by a multiplicative stochastic noise that is white in time and correlated in space. Formally this equation approximates a stochastically forced mean curvature flow. We derive a uniform bound for the diffuse surface area, prove the tightness of solutions in the sharp interface limit, and show the convergence to phase-indicator functions. | en |
dc.identifier.uri | http://hdl.handle.net/2003/27416 | |
dc.identifier.uri | http://dx.doi.org/10.17877/DE290R-15653 | |
dc.language.iso | en | |
dc.subject.ddc | 610 | |
dc.title | Tightness for a stochastic Allen-Cahn equation | en |
dc.type | Text | de |
dc.type.publicationtype | preprint | en |
dcterms.accessRights | open access |