Locally optimal designs for errors-in-variables models

dc.contributor.authorKonstantinou, Maria
dc.contributor.authorDette, Holger
dc.date.accessioned2014-09-05T11:39:31Z
dc.date.available2014-09-05T11:39:31Z
dc.date.issued2014-09-05
dc.description.abstractThis paper considers the construction of optimal designs for nonlinear regres- sion models when there are measurement errors in the predictor. Corresponding (approximate) design theory is developed for maximum likelihood and least squares estimation, where the latter leads to non-concave optimisation problems. For the Michaelis-Menten, EMAX and exponential regression model D-optimal designs can be found explicitly and compared with the corresponding designs derived under the assumption of no measurement error in concrete applications.en
dc.identifier.urihttp://hdl.handle.net/2003/33611
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-6876
dc.language.isoende
dc.relation.ispartofseriesDiscussion Paper / SFB 823;31/2014en
dc.subjecterror-in-variable modelen
dc.subjectD-optimalityen
dc.subjectnonlinear regressionen
dc.subjectoptimal designen
dc.subject.ddc310
dc.subject.ddc330
dc.subject.ddc620
dc.titleLocally optimal designs for errors-in-variables modelsen
dc.typeTextde
dc.type.publicationtypeworkingPaperde
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
DP_3114_SFB823_Konstantinou_Dette.pdf
Size:
355.85 KB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.02 KB
Format:
Item-specific license agreed upon to submission
Description: