A simulation study to compare robust tests for linear mixed-effects meta-regression

dc.contributor.authorWelz, Thilo
dc.contributor.authorPauly, Markus
dc.date.accessioned2020-09-22T13:10:37Z
dc.date.available2020-09-22T13:10:37Z
dc.date.issued2020-01-12
dc.description.abstractThe explanation of heterogeneity when synthesizing different studies is an important issue in meta‐analysis. Besides including a heterogeneity parameter in the statistical model, it is also important to understand possible causes of between‐study heterogeneity. One possibility is to incorporate study‐specific covariates in the model that account for between‐study variability. This leads to linear mixed‐effects meta‐regression models. A number of alternative methods have been proposed to estimate the (co)variance of the estimated regression coefficients in these models, which subsequently drives differences in the results of statistical methods. To quantify this, we compare the performance of hypothesis tests for moderator effects based upon different heteroscedasticity consistent covariance matrix estimators and the (untruncated) Knapp‐Hartung method in an extensive simulation study. In particular, we investigate type 1 error and power under varying conditions regarding the underlying distributions, heterogeneity, effect sizes, number of independent studies, and their sample sizes. Based upon these results, we give recommendations for suitable inference choices in different scenarios and highlight the danger of using tests regarding the study‐specific moderators based on inappropriate covariance estimators.en
dc.identifier.urihttp://hdl.handle.net/2003/39344
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-21245
dc.language.isoende
dc.relation.ispartofseriesRes Synth Methods;11(3)
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectHeteroscedasticityen
dc.subjectMeta-regressionen
dc.subjectRobust covariance estimationen
dc.subjectStandardized mean differenceen
dc.subject.ddc310
dc.subject.rswkHeteroskedastizitätde
dc.subject.rswkMetaanalysede
dc.subject.rswkRegressionsanalysede
dc.subject.rswkRobuste Kovarianzde
dc.titleA simulation study to compare robust tests for linear mixed-effects meta-regressionen
dc.typeTextde
dc.type.publicationtypearticlede
dcterms.accessRightsopen access
eldorado.secondarypublicationtruede
eldorado.secondarypublication.primarycitationWelz, T., & Pauly, M. (2020). A simulation study to compare robust tests for linear mixed‐effects meta‐regression. Res Synth Methods, 11(3), 331-342de
eldorado.secondarypublication.primaryidentifierhttps://doi.org/10.1002/jrsm.1388de

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
jrsm.1388.pdf
Size:
1.19 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.85 KB
Format:
Item-specific license agreed upon to submission
Description: