Introducing LASSO-type penalisation to generalised joint regression modelling for count data

dc.contributor.authorvan der Wurp, Hendrik
dc.contributor.authorGroll, Andreas
dc.date.accessioned2023-04-18T08:55:16Z
dc.date.available2023-04-18T08:55:16Z
dc.date.issued2021-11-12
dc.description.abstractIn this work, we propose an extension of the versatile joint regression framework for bivariate count responses of the R package GJRM by Marra and Radice (R package version 0.2-3, 2020) by incorporating an (adaptive) LASSO-type penalty. The underlying estimation algorithm is based on a quadratic approximation of the penalty. The method enables variable selection and the corresponding estimates guarantee shrinkage and sparsity. Hence, this approach is particularly useful in high-dimensional count response settings. The proposal’s empirical performance is investigated in a simulation study and an application on FIFA World Cup football data.en
dc.identifier.urihttp://hdl.handle.net/2003/41341
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-23184
dc.language.isoende
dc.relation.ispartofseriesAStA advances in statistical analysis;Vol. 107. 2023, pp 127-151
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectCount data regressionen
dc.subjectFIFA world cupsen
dc.subjectFootball penalisationen
dc.subjectJoint modellingen
dc.subjectRegularisationen
dc.subject.ddc310
dc.titleIntroducing LASSO-type penalisation to generalised joint regression modelling for count dataen
dc.typeTextde
dc.type.publicationtypearticlede
dcterms.accessRightsopen access
eldorado.secondarypublicationtruede
eldorado.secondarypublication.primarycitationAStA advances in statistical analysis. Vol.107. 2023, pp 127–151en
eldorado.secondarypublication.primaryidentifierhttps://doi.org/10.1007/s10182-021-00425-5de

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s10182-021-00425-5.pdf
Size:
1.52 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.85 KB
Format:
Item-specific license agreed upon to submission
Description: