Shape constrained estimators in inverse regression models with convolution type operator

dc.contributor.authorBirke, Melanie
dc.contributor.authorBissantz, Nicolai
dc.date.accessioned2007-12-04T14:16:20Z
dc.date.available2007-12-04T14:16:20Z
dc.date.issued2007-12-04T14:16:20Z
dc.description.abstractIn this paper we are concerned with shape restricted estimation in inverse regression problems with convolution-type operator. We use increasing rearrangements to compute increasing and convex estimates from an (in principle arbitrary) unconstrained estimate of the unknown regression function. An advantage of our approach is that it is not necessary that prior shape information is known to be valid on the complete domain of the regression function. Instead, it is sufficient if it holds on some compact interval. A simulation study shows that the shape restricted estimate on the respective interval is significantly less sensitive to moderate undersmoothing than the unconstrained estimate, which substantially improves applicability of estimates based on data-driven bandwidth estimators. Finally, we demonstrate the application of the increasing estimator by the estimation of the luminosity profile of an elliptical galaxy. Here, a major interest is in reconstructing the central peak of the profile, which, due to its small size, requires to select the bandwidth as small as possible.en
dc.identifier.urihttp://hdl.handle.net/2003/24904
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-15931
dc.language.isoende
dc.subjectConvexityen
dc.subjectImage reconstructionen
dc.subjectIncreasing rearrangementsen
dc.subjectInverse problemsen
dc.subjectMonotonicityen
dc.subjectOrder restricted inferenceen
dc.subjectRegression estimationen
dc.subjectShape restrictionsen
dc.subject.ddc004
dc.titleShape constrained estimators in inverse regression models with convolution type operatoren
dc.typeTextde
dc.type.publicationtypereporten
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
tr35-07.pdf
Size:
269.72 KB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.92 KB
Format:
Item-specific license agreed upon to submission
Description: