Fourier analysis of serial dependence measures

dc.contributor.authorVan Hecke, Ria
dc.contributor.authorVolgushev, Stanislav
dc.contributor.authorDette, Holger
dc.date.accessioned2017-03-15T11:40:32Z
dc.date.available2017-03-15T11:40:32Z
dc.date.issued2017
dc.description.abstractClassical spectral analysis is based on the discrete Fourier transform of the auto-covariances. In this paper we investigate the asymptotic properties of new frequency domain methods where the auto-covariances in the spectral density are replaced by alternative dependence measures which can be estimated by U-statistics. An interesting example is given by Kendall's r , for which the limiting variance exhibits a surprising behavior.en
dc.identifier.urihttp://hdl.handle.net/2003/35853
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-17877
dc.language.isoende
dc.relation.ispartofseriesDiscussion Paper / SFB823;6, 2017en
dc.subjectspectral theoryen
dc.subjectU-statisticsen
dc.subjectstrictly stationary time seriesen
dc.subject.ddc310
dc.subject.ddc330
dc.subject.ddc620
dc.subject.rswkSpektraldichtede
dc.subject.rswkU-Statistikde
dc.titleFourier analysis of serial dependence measuresen
dc.typeTextde
dc.type.publicationtypeworkingPaperde
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
DP_0617_SFB823_VanHecke_Volgushev_Dette.pdf
Size:
502.38 KB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.85 KB
Format:
Item-specific license agreed upon to submission
Description: