Testing symmetry of a nonparametric bivariate regression function

dc.contributor.authorBirke, Melaniede
dc.contributor.authorDette, Holgerde
dc.contributor.authorStahljans, Kristinde
dc.date.accessioned2009-10-29T10:07:00Z
dc.date.available2009-10-29T10:07:00Z
dc.date.issued2009-07-10de
dc.description.abstractWe propose a test for symmetry of a regression function with a bivariate predictor based on the L_2 distance between the original function and its reflection. This distance is estimated by kernel methods and it is shown that under the null hypothesis as well as under the alternative the test statistic is asymptotically normally distributed. The finite sample properties of a bootstrap version of this test are investigated by means of a simulation study and a possible application in detecting asymmetries in gray-scale images is discussed.en
dc.identifier.urihttp://hdl.handle.net/2003/26480
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-12674
dc.language.isoende
dc.relation.ispartofseriesDiscussion Paper / SFB 823; 5/2009de
dc.subject.ddc310de
dc.subject.ddc330de
dc.subject.ddc620de
dc.titleTesting symmetry of a nonparametric bivariate regression functionen
dc.typeTextde
dc.type.publicationtypereportde
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
005.pdf
Size:
405.96 KB
Format:
Adobe Portable Document Format
Description:
DNB