An isogeometric mortar method for the coupling of multiple NURBS domains with optimal convergence rates

dc.contributor.authorDornisch, Wolfgang
dc.contributor.authorStöckler, Joachim
dc.date.accessioned2022-04-19T12:31:17Z
dc.date.available2022-04-19T12:31:17Z
dc.date.issued2021-11-13
dc.description.abstractWe investigate the mortar finite element method for second order elliptic boundary value problems on domains which are decomposed into patches Ωk with tensor-product NURBS parameterizations. We follow the methodology of IsoGeometric Analysis (IGA) and choose discrete spaces Xh,k on each patch Ωk as tensor-product NURBS spaces of the same or higher degree as given by the parameterization. Our work is an extension of Brivadis et al. (Comput Methods Appl Mech Eng 284:292–319, 2015) and highlights several aspects which did not receive full attention before. In particular, by choosing appropriate spaces of polynomial splines as Lagrange multipliers, we obtain a uniform infsup-inequality. Moreover, we provide a new additional condition on the discrete spaces Xh,k which is required for obtaining optimal convergence rates of the mortar method. Our numerical examples demonstrate that the optimal rate is lost if this condition is neglected.en
dc.identifier.urihttp://hdl.handle.net/2003/40861
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-22718
dc.language.isoende
dc.relation.ispartofseriesNumerische Mathematik;Bd 149. 2021, H. 4, S. 871-931
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject65N30de
dc.subject65N55de
dc.subject41A15de
dc.subject.ddc510
dc.titleAn isogeometric mortar method for the coupling of multiple NURBS domains with optimal convergence ratesen
dc.typeTextde
dc.type.publicationtypearticlede
dcterms.accessRightsopen access
eldorado.secondarypublicationtruede
eldorado.secondarypublication.primarycitationNumerische Mathematik. Bd 149. 2021, H. 4, S. 871-931de
eldorado.secondarypublication.primaryidentifierhttps://doi.org/10.1007/s00211-021-01246-zde

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Dornisch-Stöckler2021_Article_AnIsogeometricMortarMethodForT.pdf
Size:
4.05 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.85 KB
Format:
Item-specific license agreed upon to submission
Description: