The Richards equation with hysteresis and degenerate capillary pressure

dc.contributor.authorSchweizer, Ben
dc.date.accessioned2011-08-23T13:04:04Z
dc.date.available2011-08-23T13:04:04Z
dc.date.issued2011-08-23
dc.description.abstractWe study the Richards equation with a dynamic capillary pressure, including hysteresis. We provide existence and approximation results for degenerate capillary pressure curves pc, treating two cases. In the first case, the permeability function k can be degenerate, but the initial saturation does not take the critical values. In the second case, the permeability function k is strictly positive, but the capillary pressure function can be multi-valued. In both cases, the degenerate behavior of pc leads to the physically desired uniform bounds for the saturation variable. Our approach exploits maximum principles and relies on the corresponding uniform bounds for pressure and saturation. A new compactness result for the saturation variable allows to take limits in nonlinear terms. The solution concept uses tools of convex analysis.en
dc.identifier.urihttp://hdl.handle.net/2003/29032
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-13410
dc.language.isoen
dc.subjectcapillary hysteresisen
dc.subjectmaximum principleen
dc.subjectnon-equilibrium Richards equationen
dc.subjectnonlinear pseudo-parabolic systemen
dc.subject.ddc610
dc.titleThe Richards equation with hysteresis and degenerate capillary pressureen
dc.typeTextde
dc.type.publicationtypepreprinten
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
mathematicalPreprint-2011-10.pdf
Size:
456.11 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
952 B
Format:
Item-specific license agreed upon to submission
Description: