Jensen's inequality for the Tukey median

dc.contributor.authorGather, Ursula
dc.contributor.authorKwiecien, Robert
dc.date.accessioned2007-05-25T10:39:02Z
dc.date.available2007-05-25T10:39:02Z
dc.date.issued2007-05-25T10:39:02Z
dc.description.abstractJensen's inequality states for a random variable X with values in Rd and existing expectation and for any convex function f : R^d -> R, that f(E(X)) <= E(f(X)). We prove an analogous inequality, where the expectation operator is replaced by the halfspace-median-operator (or Tukey-median-operator).en
dc.identifier.urihttp://hdl.handle.net/2003/24309
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-264
dc.language.isoende
dc.subjectJensen's inequalityen
dc.subjectMultivariate medianen
dc.subjectRobustnessen
dc.subjectTukey depthen
dc.subject.ddc004
dc.titleJensen's inequality for the Tukey medianen
dc.typeTextde
dc.type.publicationtypereporten
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
tr07-07.pdf
Size:
182.76 KB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.93 KB
Format:
Item-specific license agreed upon to submission
Description: