Goodness-of-fit testing the error distribution in multivariate indirect regression

dc.contributor.authorChown, Justin
dc.contributor.authorBissantz, Nicolai
dc.contributor.authorDette, Holger
dc.date.accessioned2018-12-14T14:03:05Z
dc.date.available2018-12-14T14:03:05Z
dc.date.issued2018
dc.description.abstractWe propose a goodness-of-fit test for the distribution of errors from a multivariate indirect regression model. The test statistic is based on the Khmaladze transformation of the empirical process of standardized residuals. This goodness-of-fit test is consistent at the root-n rate of convergence, and the test can maintain power against local alternatives converging to the null at a root-n rate.en
dc.identifier.urihttp://hdl.handle.net/2003/37835
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-19830
dc.language.isoende
dc.relation.ispartofseriesDiscussion Paper / SFB823;34/2018en
dc.subjecthypothesis testingen
dc.subjectregularizationen
dc.subjectmultivariate regressionen
dc.subjectinverse problemsen
dc.subjectindirect regression estimatoren
dc.subject.ddc310
dc.subject.ddc330
dc.subject.ddc620
dc.titleGoodness-of-fit testing the error distribution in multivariate indirect regressionen
dc.typeTextde
dc.type.publicationtypeworkingPaperde
dcterms.accessRightsopen access
eldorado.secondarypublicationfalsede

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
DP_3418_SFB823_Chown_Bissantz_Dette.pdf
Size:
778.38 KB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.85 KB
Format:
Item-specific license agreed upon to submission
Description: