The sequential empirical process of a random walk in random scenery
dc.contributor.author | Wendler, Martin | |
dc.date.accessioned | 2014-10-09T07:59:50Z | |
dc.date.available | 2014-10-09T07:59:50Z | |
dc.date.issued | 2014-10-09 | |
dc.description.abstract | A random walk in random scenery (Yn)n2N is given by Yn = Sn for a random walk (Sn)n2N and iid random variables ( (n))n2N. In this paper, we will show the weak convergence of the sequential empirical process, i.e. the centered and rescaled empirical distribution function. The limit process shows a new type of behavior, combining properties of the limit in form independent case (roughness of the paths) and of the long range dependent case (self- similarity). | en |
dc.identifier.uri | http://hdl.handle.net/2003/33640 | |
dc.identifier.uri | http://dx.doi.org/10.17877/DE290R-15529 | |
dc.language.iso | en | de |
dc.relation.ispartofseries | Discussion Paper / SFB 823;32/2014 | |
dc.subject | random walk | en |
dc.subject | empirical process | en |
dc.subject | random scenery | en |
dc.subject.ddc | 310 | |
dc.subject.ddc | 330 | |
dc.subject.ddc | 620 | |
dc.title | The sequential empirical process of a random walk in random scenery | en |
dc.type | Text | de |
dc.type.publicationtype | workingPaper | de |
dcterms.accessRights | open access |